项目简介: 长期以来,对表面和界面在纳米尺度下进行高分辨率形貌、结构、表面电化学成像被认为是一项复杂而困难的工作。特别是在细胞学、纳米材料和药物开发等前沿领域,对原位、无损、高分辨的动态检测提出了更高要求。扫描离子电导显微成像技术是一类新型的探针显微技术,发展这项技术有望进一步推进单细胞分析、新型纳米材料等领域的研究。近年来,有研究者揭示HIV病毒颗粒组装与释放机制,展现了该技术在致病机制研究和药物研发等领重要的应用潜力。然而受限于弱离子流反馈(fA-pA级)和多维信号耦合等因素,该项技术在动态信息获取和信息解耦等方面还存在瓶颈,同时此前该项技术仅被国外少数团队垄断,国内长期缺乏自主研发能力。团队历经十余年攻关,提出了探针介电屏蔽、二阶补偿离子电流放大技术、阿基米德螺旋轨迹优化等多项关键措施,突破了动态多维信息获取、微电极建模和离子电流非线性反馈控制等关键瓶颈,研制出具有完全自主知识产权的高性能扫描纳米移液探针系统,关键技术指标达到国际领先水平。目前该系统已在北大、南大、中科院等十余家单位成功应用,成果包括13篇论文、8项发明专利(转化5项)及4项软件著作权,推动我国在该领域迈入国际先进行列。 主要知识产权目录: (一)论文著作 [1] Jiao Y, Zhuang J, Zheng Q, et al. A high accuracy ion conductance imaging method based on the approach curve spectrum[J]. Ultramicroscopy, 2020, 215: 113025. [2] Cheng L, Zhuang J, Wang T, et al. 500-kHz bandwidth feedback for scanning ion conductance microscopy with nanoresolution[J]. IEEE Transactions on Industrial Electronics, 2023, 71(2): 2080-2089. [3] Jiao Y, Zhuang J, Zhang T, et al. Research on the adaptive sensitivity scanning method for ion conductance microscopy with high efficiency and reliability[J]. Analytical chemistry, 2021, 93(36): 12296-12304. [4] Jiao Y, Zhuang J, Li F, et al. Analysis and improvement of positioning reliability and accuracy of theta pipette configuration for scanning ion conductance microscopy[J]. Ultramicroscopy, 2021, 224: 113240. [5] Zhuang J, Yan H, Zheng Q, et al. Study on a rapid imaging method for scanning ion conductance microscopy using a double-barreled theta pipette[J]. Analytical Chemistry, 2020, 92(24): 15789-15798. [6] Zhuang J, Jiao Y, Mugabo V. A new scanning mode to improve scanning ion conductance microscopy imaging rate with pipette predicted movement[J]. Micron, 2017, 101: 177-185. [7] Gu S, Zhuang J, Wang T, et al. The target region focused imaging method for scanning ion conductance microscopy[J]. Ultramicroscopy, 2024, 257: 113910. [8] Zhuang J, Wang Z, Li Z, et al. Smart scanning ion-conductance microscopy imaging technique using horizontal fast scanning method[J]. Microscopy and Microanalysis, 2018, 24(3): 264-276. [9] Zhuang J, Cheng L, Liao X, et al. A fuzzy control for high-speed and low-overshoot hopping probe ion conductance microscopy[J]. Review of Scientific Instruments, 2020, 91(3). [10] Zhuang J, Jiao Y, Li Z, et al. A continuous control mode with improved imaging rate for scanning ion conductance microscope (SICM)[J]. Ultramicroscopy, 2018, 190: 66-76. [11] Wang Z, Zhuang J, Gao Z, et al. A fast scanning ion conductance microscopy imaging method using compressive sensing and low-discrepancy sequences[J]. Review of Scientific Instruments, 2018, 89(11). [12] Zhuang J, Wang Z, Liao X, et al. Hierarchical spiral-scan trajectory for efficient scanning ion conductance microscopy[J]. Micron, 2019, 123: 102683. [13] 庄健,王志武,廖晓波.应用于高速离子电导扫描成像的双压电定位平台[J].光学精密工程,2020,28(10):2203-2214. (二)授权专利 [1] 庄健;朱聪强;郑强强.一种基于阵列线激光的SICM扫描系统及方法: ZL202111016831.4[P].2022-12-09. [2] 庄健;郭仁飞;尚春阳;杨清宇;于德弘.一种扫描离子电导显微镜的高频夹持器: Zl201310263763.0[P].2015-05-27. [3] 庄健;王志武;程磊.一种液滴型扫描离子电导显微镜及其探针和扫描方法: ZL201811033309.5[P].2020-03-17. [4] 庄健;廖晓波;郑强强;程磊.一种用于微移液管微纳制造检测的湿度控制系统: ZL202010889793.2[P].2021-12-28. [5] 庄健;高子军;焦阳博瀚.一种用于细胞器药物定位投递检测装置及投药检测方法: ZL201811168633.8[P].2020-03-31. [6] 庄健;扫描离子电导显微镜的片上化控制器及控制方法: Zl201610134113.X[P].2018-08-10 [7] 庄健;王庭凯;廖晓波;闫衡;郑强强.一种电化学实验平台微探针的夹持与固定装置: ZL201910702637.9[P].2021-02-02 [8] 庄健;金鹏.基于FPGA的扫描离子显微镜的控制器及控制方法: ZL 201310386169.0[P].2015-08-29 (三)软件著作权 [1] 庄健;梁鹏博.扫描离子电导-电化学显微镜的控制系统 [简称:SICM-SECM的控制系统] V1.0[软件著作权].北京:国家版权局,2017;登记号: 2017SR385300. [2] 庄健;赵安东.扫描离子电导显微镜的片上化控制系统V1.0[软件著作权].北京:国家版权局,2015;登记号: 2015SR194463. [3] 庄健;焦阳博翰;郭仁飞;梁春燕.扫描离子电导显微镜成像软件V1.0[软件著作权].北京:国家版权局,2015;登记号: 2015SR038604. [4] 庄健;金鹏.基于FPGA的扫描离子电导显微镜的实验成像控制系统V1.0[软件著作权].北京:国家版权局,2014;登记号: 2014SR004722.
|